Route 21 corridor: What does it look like today?

10,000 weekday rides on Route 21, Metro Transit’s second busiest route, with another 700 daily on Route 53

Carries 20% of people in vehicles in some places, while making up less than 2% of vehicles

Connects to important community destinations and other major transit routes

Average Route 21 trip spends 50% of its time stopped

Average Route 21 speeds can be as slow as 8 miles per hour

Ridership has been declining

metrotransit.org/B-Line-Project
Route 21 Ridership Highlights

- More than 10,000 average weekday rides, second-highest Metro Transit ridership route
- Third most productive local bus route (number of passengers per hour of service)
- One of the Metro Transit routes on which customers most frequently experience crowded buses
- Highest ridership between Hennepin Avenue and Hiawatha Avenue
- Weekend and midday ridership also make up an important part of Route 21 ridership
- Highest transfer activity between Route 21 and: Route 5 (Chicago Ave.), Route 18 (Nicollet/Blaisdell/1st Ave.), METRO Blue Line (Hiawatha Ave.), and Route 14 (Bloomington Ave.)
How will METRO BRT provide a faster trip?

Limited stops, frequent service

Today, local bus service in the corridor provides frequent service, stopping about every other block for most of the route.

Local Bus

1/8 mile between stops

BRT would substantially replace local bus service to become the primary service in the corridor, with high frequency service all day, and on nights and weekends. Stations would be spaced every third to half mile on average.

BRT

1/3 to 1/2 mile between stations

Local bus may continue to run at a reduced frequency to serve existing bus stops. Concept service plans with specific details on spacing and service will be developed during the planning phase.

Pay before boarding for faster stops

For speedier boarding through all doors, BRT buses won’t have fareboxes. Customers will purchase a ticket or tap a Go-To Card at the station, just like light rail. Metro Transit Police officers check fare payment.

Curb extensions for speed and space

Where BRT buses run in general traffic, stations will be built on curb bumpouts to avoid delay caused by merging back into general traffic.

Transit advantages throughout the corridor

Transit advantages at key locations along BRT lines will help keep buses moving. Transit advantages could include:

Transit Signal Priority

To keep moving, BRT buses could “ask” traffic signals for early or extended green lights.

Queue Jump Lanes

BRT buses could use separate space at intersections to pull ahead of traffic stopped at a red light. Dedicated green lights could allow the bus to go first.

Bus Approach Lanes

BRT buses could also use a short dedicated lane as they approach busy intersections. As with queue jump lanes, dedicated green lights could allow the bus to go first.

Dedicated Bus-only Lanes

To avoid getting stuck behind traffic, BRT buses could travel in their own lane on the most congested portions of the route.
What will METRO BRT stations look like?

A. Pylon markers help riders identify stations from a distance.
B. Real-time NexTrip signs provide bus information, and on-demand annunciators speak this information for people with low vision.
C. Utility boxes near station areas house necessary communications and electrical equipment.
D. Shelters provide weather protection and feature push-button, on-demand heaters and shelter lighting. Shelter sizes will vary based on customer demand (small shown here).
E. Ticket machines and fare card validators collect all payment before customers board the bus.
F. Emergency telephones provide a direct connection to Metro Transit police. Stations also feature security cameras.
G. Stations feature trash and recycling containers.
H. Platform edges are marked with a cast-iron textured warning strip to keep passengers safely away from the curb while the bus approaches. Many stations also feature raised curbs for easier boarding.
I. Platform areas are distinguished by a dark gray concrete pattern.
J. Some stations have pedestrian-scale light fixtures to provide a safe, well-lit environment. Fixtures will match existing lights in the surrounding area.
K. Benches at stations provide a place to sit.
L. Stations have bike parking.
What are the goals of the B Line Project?

1. Provide faster, more reliable transit trip times in the Route 21 corridor
2. Improve transit experience at stops and on vehicles
3. Expand equitable access to destinations
4. Provide efficient connections to the existing and planned transit network
What is the METRO B Line?
The METRO B Line is a planned bus rapid transit line, like the A Line, that will provide faster and more reliable transit service in the Route 21 corridor along Lake Street and Marshall Avenue.

Why was the Route 21 corridor selected for bus rapid transit service?
Route 21 is the second busiest bus route in the Twin Cities. Today it carries approximately 10,000 passengers per weekday. The 2012 Arterial Transitway Corridors Study and 2014 Midtown Corridor Alternatives Analysis found that enhanced bus service in the Lake Street corridor would perform well in the corridor. In 2016, this corridor was identified as the B Line project and slated to become the region’s fourth arterial bus rapid transit line.

How much faster will B Line service be compared to Route 21?
A scheduled trip on Route 21 sees significant delays, depending on the time of day. The goal of the B Line is to make service approximately 20 percent faster by stopping less often, allowing customers to board faster, and stopping at fewer red lights. Similar travel time improvements have been achieved on the A Line.

How will future bus service levels compare with today’s Route 21?
Today, Route 21 runs every 10-15 minutes for much of the day through Lake Street and Marshall Avenue. The B Line is planned to become the main transit service along the western portion of the corridor (Uptown in Minneapolis to Snelling & University in St. Paul), with service about every 10 minutes throughout most of the day and evening and less frequent service early in the morning and late at night. To plan for a sustainable long-term operation, Metro Transit is considering fully replacing Route 21 with the B Line.

As planning progresses, Metro Transit staff will collect feedback from the community on the following questions:
- Should the B Line extend along the full Route 21 corridor from Snelling Avenue along Selby Avenue to downtown St. Paul?
- If so, what alignment should it use between Snelling Avenue and Lexington Avenue?
- At what intersection should each future station be located?
- If Route 21 is completely replaced by the B Line, where should stops be placed to best balance speed and access?

A Draft Corridor Plan in late 2019 will answer these questions, and determine the location of B Line stops and the future transit service mix within the corridor.

What will happen to Route 53 service?
Route 53 service provides weekday peak-only service between Lake Street/Marshall Avenue and downtown St. Paul via Interstate 94. Because Route 53 serves a different purpose than the Route 21, the B Line is not anticipated to result in any change in Route 53 service.

What will be the frequency and hours of service?
The B Line will provide frequent service all day on weekdays, Saturdays and Sundays. Exact schedules and service plans will be formed through project development.

When will construction begin?
Construction is currently set to begin as early as 2022. This schedule may shift based on funding opportunities and availability.

How much will the B Line cost?
The preliminary estimated cost of the B Line project is $54 million. This includes the cost of stations and related technology/fare collection elements, new BRT vehicles, transit signal priority, and the cost of designing and delivering the line. Cost estimates will be refined as planning and engineering progress.

How is the project funded?
$23 million of federal and Metropolitan Council funds have been identified for the B Line project to date.
What is the timeline for implementing the B Line?

Corridor and Station Planning

- **Gain community input on Corridor and Alignment Service Mix Transit Advantages Station Spacing**
 - Initial Community Outreach & Evaluation
 - Winter 2019

- **Draft Corridor Plan**
 - Corridor and Alignment Service Mix Transit Advantages Station Spacing
 - Spring 2020

- **Recommended Corridor Plan**
 - Revisions based on coordination with project partners and community input
 - Summer 2020

Engineering

- 2020–2021

Construction

- 2022

(pending full funding)
BRT service will be evaluated for implementation beyond Snelling Avenue extending to downtown St. Paul. As part of this decision, there are a number of facts to consider. Extending the B Line to downtown St. Paul would be expected to result in:

- Higher project construction costs and operating costs
- An additional east-west transitway connection to downtown St. Paul
- Improved travel times or more direct routing for more origins and destinations
- Greater challenges in providing reliable service due to longer alignment
- Expanded access to destinations for areas of concentrated poverty
- Relatively lower ridership than B Line segments west of Snelling Avenue
- Additional coordination with METRO Gold Line planning in downtown St. Paul

B Line would use METRO Gold Line stations in downtown St. Paul.

The potential for B Line routing to downtown St. Paul will be studied in 2019.
Potential Downtown St. Paul B Line Routing: Options Between Snelling Ave and Lexington Ave
Upon opening the METRO A Line in 2016, Metro Transit continued to operate Route 84 in the same corridor as a less frequent local travel option.

A similar approach was taken for the Route 16, which provides local service on University Avenue alongside the METRO Green Line.

However, as the A Line and Green Line have been successful in attracting riders, the local underlying service on Route 84 and Route 16, respectively, has not kept pace with standards for ridership or productivity, leading to service reductions.

To plan for a sustainable long-term operation, for the B Line and the E Line, Metro Transit is considering fully replacing underlying local bus service. With that in mind, it will be important to strike a balance between faster and more reliable service with stop spacing and accessibility.

More Stops vs. Fewer Stops

More Stops
Shorter walk, but longer bus ride and less reliable service

Fewer Stops
Longer walk, but shorter bus ride and more reliable service

Wider stop placement

- Reduces overall travel times
- Helps make buses more reliable
- Provides a smoother ride with less starting, stopping, weaving
- Saves operating costs
- Allows Metro Transit to focus maintenance, snow removal resources on fewer station areas
Help us decide and prioritize

When we plan BRT lines we try to strike a balance between faster and more reliable service with stop spacing and accessibility. A key goal of BRT is to make transit service in the corridor approximately 20 percent faster than the existing local bus service.

Place a dot by the top three items that are most important for your experience using the bus:

<table>
<thead>
<tr>
<th>Overall travel time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus arriving at planned time</td>
</tr>
<tr>
<td>Bus arrives at steady frequency</td>
</tr>
<tr>
<td>Smooth ride – less starting and stopping</td>
</tr>
<tr>
<td>Less delay in traffic or stop lights</td>
</tr>
<tr>
<td>Walk distance to bus stop</td>
</tr>
<tr>
<td>Amenities at stop</td>
</tr>
</tbody>
</table>
What are Transit Advantages?

Transit advantages are treatments that improve transit speed and reliability between stops by changing the designation of street space or the operation of traffic signals.

<table>
<thead>
<tr>
<th>Description</th>
<th>Benefit to Transit Users</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Transit Signal Priority** | A traffic signal turns green earlier or stays green longer when a bus approaches | Increases speed and reliability by reducing delay at traffic signals | - Works well with in-lane stops
- Best used in corridors with long distances between signals and at signals with long cycles
- May change signal phasing of cross-street, increasing wait times |
| **Queue Jump Lane** | A shared bus/turn-lane allows the bus to avoid backed-up traffic and cross the intersection before other vehicles | Increases speed and reliability by allowing buses to move around backed-up traffic at intersections | - Enforcement necessary to avoid use by unauthorized vehicles
- Atypical signal configuration and phasing
- Best at intersections with low right-turn volumes
- Can be paired with transit signal priority
- May increase wait times for other vehicles |
| **Bus Approach Lane** | Exclusive street space for buses as they approach an intersection | Increases speed and reliability by allowing buses to stay in lane and avoid backed-up traffic at intersections | - Enforcement necessary to avoid use by unauthorized vehicles
- Best at intersections with high right-turn volumes
- Can be paired with transit signal priority
- May increase queue lengths in adjacent lane
- Can be used all day or peak-only |
| **Bus-only Lane** | Exclusive street space for buses | Increases speed and reliability along frequently-congested street segments | - Enforcement necessary to avoid use by unauthorized vehicles
- Can be paired with transit signal priority
- May increase traffic volume in adjacent lane
- Can be used all day or peak-only, can share or prohibit turns, can share with bicycles |